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1. Introduction. Numerical methods for the solution of ordinary differential 
equations may be put in two categories-numerical integration (e.g., predictor- 
corrector) methods and Runge-Kutta methods. The advantages of the latter are 
that they are self-starting and easy to program for digital computers but neither 
of these reasons is very compelling when library subroutines can be written to 
handle systems of ordinary differential equations. Thus, the greater accuracy and 
the error-estimating ability of predictor-corrector methods make them desirable 
for systems of any complexity. However, when predictor-corrector methods are 
used, Runge-Kutta methods still find application in starting the computation and 
in changing the interval of integration. 

If, then, Runge-Kutta methods are considered in the context of using them for 
starting and for changing the interval, matters such as stability [2], [3] and minimiza- 
tion of roundoff errors [4] are not significant. Also, simplifying the coefficients so 
that the computation will be speeded up is not important and, on modern computers, 
minimization of storage [4] is seldom important. In fact, the only criterion of sig- 
nificance in judging Runge-Kutta methods in this context is minimization of 
truncation error. It is the purpose of this paper to derive Runge-Kutta methods of 
second, third and fourth order which have minimum truncation error bounds of a 
specified type. We will consider only the case of integrating a single first-order 
differential equation because this is the only tractable case analytically. But it 
seems reasonable to assume that methods which are best in a truncation error 
sense for one equation will be at least nearly best for systems of equations. 

2. The General Equations. For the solution of the equation 

(2.1) y'= f(x, y) y(xo) = yo 

at a sequence of points x1 , X2 , * the general Runge-Kutta method of order m is 

m 

(2.2) Yn+i Yn- = k wiki 

where yr = y(xr), the wi's are constants and 

(2.3) ki = hf (x + aih. X Yn + E fl3jkj) 

with hn = x+ - xn and al = 0. By choosing the ai's and fij's properly the ex- 
pansion of the right hand side of equation (2.2) about (xn, yn) in powers of hn can 
be made identical with the Taylor series expansion of k about Xn through the term 
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in hnm. One set of constraints on the ai's and 3ij's that always results is 
i_1 

(2.4) a,,- E ij . 
j=1 

The error to be added to the right hand side of equation (2.2) to make it an 
exact relationship consists of a term Ehn+l, where E depends on f(x, y), plus terms 
of higher degree in hn . For the classical fourth-order method of Kutta [6] a bound 
on E has been found by Lotkin [7] who improved on a bound of Bieberbach [1]. We 
will derive bounds on E for Runge-Kutta methods of second, third and fourth order 
in the same form as Lotkin: 

(2.5) 1 E I < cMLm 

where c is a constant and, in a region R about (xn, yn)* 

(2.6) f(x, y) I < M and a i+i < I, /M 

where M and L are constants and i + j < m. 

3. Second-Order Systems. The coefficients to be determined are w1, w2, 
a2 and 321. Matching powers of hn through hn2 imposes three constraints (see, for 
example, [5]) which leads to the following one-parameter family: 

(3.1) w== 1 - 1/(2a2) W2= 1/(2a2) 

with 321 = a2 following from equation (2.4). The coefficient C2 of hn3 is given by 

(3.2) 
C2 

[( ) - (a22W2/2)]D2f + (I )fy Df 

where 

(3.3) D /= 8/x + fn( )/O)y) fn- f(xn 1 Yn) . 

Using (3.1) and (3.3) in (3.2) and the notation of (2.6), a bound on E is given by 

(3.4) E I < [4 ( a)-(a2/4) + ']ML2. 

Clearly the minimum bound will be achieved if we set a2 = which leads to the 
well known formula [5] 

(3.5) Yn+?-yn = hnf(Xn , Yn) + (3)hnf(Xn + (2)hn, Yn + (2)hnfn) 

for which the right-hand side of (3.4) becomes (3) ML2. 

4. Third-Order Systems. In this case the coefficients form a two-parameter 
family given by 

w, -1 + [2 - 3(a2 + a3)]/6a2a3 

W- (3a3 - 2)/[6a2(a3 - a2)] 

(4.1) 
W3 = (2 - 3a2)/[6a3(a3- a2)] 

032 [a3(a3 - a2)]/[a2(2 - 3a2)] 

* This region must, of course, include all values of x and y in equations (2.2) and (2.3). 
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when a2 5 0, a3 - 0, and a(2 ? a3 . When &3 =0 there is a one-parameter family 
given by 

2 1, 0a2 -3 wl=4-W3 
(4.2) 3 

/32 1/(4w3) w2 4 

When a2 = = 2 there is a one-parameter family given by 

(4.3) W = 4-w3 132 = 1/(4W3) 

No solutions other than (4.1), (4.2), and (4.3) are possible. 
The coefficient c3 of h.4 is given by 

3= [(1/4 !)-(1/3 !) (a2W2 + a32W3)] D3f 

(4.4) + [(1/4!) - (1/2!)ca2Q232W3]fy D2f 

+ [(3/4!) - a2a3O32W3) Df Dfy + (1/4 !)f2Df. 

Substituting (3.3) and (4.1) into (4.4), combining terms, taking absolute values, 
and using (2.6) leads to the following bound on E: 

(4.5) E t < [8 1 a, I + i a2 J + 12a2 + a31 + I a2 + a31 + 2 1 a31 + 2 1 a4 1]ML3 

where 

a=() - ( )[2(a2 + aX3) - 3a2a3] 

(4.6) a2 = () a2/12 

a3=( )-a3/6 a4 = . 

A simple analysis shows that the coefficient of ML3 in (4.5) will be minimized if 
cX2 = I and a3 = 3 in which case we get 

(4.7) [EI < (1)ML3. 

If (4.2) instead of (4.1) is used in (4.4) the bound on E is 

(4.8) {E] < (2)ML3 

independent of the value of w3. If (4.3) is used the bound, again independent of 
w3, is 

(4.9) IE i< ( 1 )ML3. 

Thus, for third-order Runge-Kutta methods the minimum error bound of the type 
we are considering is given by (4.7). In this case equations (2.2) and (2.3) become 

(4.10) y+ - y, = (9)kj + (3)k2 + (4)k3 

where 

i hhnf(xn, yY,) 

(4.11) k2= h,,f(x. + 2hn , Yn -+ 2ki) 

k3 = hhf(X, + (3)h, I yn + (3)k2). 
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5. Fourth-Order Systems. Again, the coefficients form a two-parameter family. 
They are given by 

Wl = + [1 - 2(a2 + a3)]/12a2a3 

W2 = (2a3 - 1)/[12a22(a3 - a2) (1 - a2)] 

W3= (1 -2a2)/[12a33(a3 - a2) (1 - a3)] 

(5.1) W4 = 2 + [2(a2 + a3) - 3]/[12(1- a2)(1- a3)] 

a4 = 1 032 = [a3(a3 - a2)]/[2a2( 1 - 2a2)] 

(1 (- a2)[a2 + a3 - 1 - (2a3 - 1)2] 

1342 2a2(a3 a2)[6a2a3 -4(a2 + a3) + 3] 

_3 = (1 - 2a2)(1 - a2)(1 - a3) 

a3(a3 - a2)[6a2a3 - 4(a2 + a3) + 3] 

when a2 ? 0, a3 5? 0, a2 5? 1, a3 5? 1, and a2 5? a3. The other possible solutions are 

a2 a3 = a4= 1 

(5.2) w= W2 = (23) -W3 W4=6 

332 = 17(6w3) 342 = 1 - 3W3 043 = 3W3 
and 

a2 =l 3 4 = 

(5.3) W 1 
W2 I 6 W4 W3 = 

1 

032 0 342= - 1/(12w4) 043 = 1/(3w4) 

and 
a2 = a3 0 a4 = 

(5.4) Wl = W3 W2 2 W4 = 

332 = 1/(12w3) (342 0343 = 6w3. 

For a2 = 0 and a3 = 1 no solutions are possible. Proceeding as before, a tedious 
computation leads to a bound on the error of 

IEI < [161jbi + 41b2l + Ib2 + 3b31 + 12b2 + 3b3j + Ib2 + b31 

(5.5) + I b3j + 81 b41 + I b6j + 12b6 + b7l + I bs + b6 + b71 

+ Ib6j + 12b6 + b7j + Ib71 + 21b8l]ML4 
where 

b = (Tha) -()(a24w2 + a334W3 + w4) 

b2 = (By) -4[a2a3/3232W3 + (a2/42 + a3f43)w4] 

-u ( 6 ) [a23032w3 + (a230342 + a33/343) w4] 

(5.6) N = ( ) - [4a22a3(32W3 + (a22/242 + a3 243) W4] 

b -) = (a22032043W4 

b6 = ( 1o ) - [a220322W3 + (aa2/42 + a3143) W4] 

b7 = ( )- a2(1 + a3)03204.3W4 b8 =120- 
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Finding those values of a2 and a3 which, after substitution of (5.1) into (5.6), mini- 
mize the coefficient of ML4 in (5.5) is extremely tedious but not impossible. The 
result is a2 = .4 and a3 (8) - ()56 a)12 and in this case (5.5) becomes 

(5.7) l E i < 5.46 X 10-2M31L4. 

If (5.2) is used instead of (5.1), the bound is minimized if W3 = 3, in which case 

(5.8) 1 E I < ( l-!-:3-)ML4 = 7.22 X 10-2 ML4. 

IUsing (5.3) the bound is minimized if W4 = 51-, in which case 

(5.9) l E I < ( 7-)ML 4 = 19.72 X 10-2 ML4. 

Using (5.4) the bound is minimized when W3 - in which case 

(5.10) E < (-7))ML4 17.64 X 102ML4. 

Thus, the best bound is given by (5.7) and the complete set of equations in this 
case (correct to eight decimal places) is 

(5.11) yn?+ - yn, = .17476028k1- .55148066k2 + 1.20553560k3 + .17118478k4 

where 

k= hnf(xn , y, ) 

5 k2= hnf(xn + .4hn, yn + .4k1) 

k3= hnf(xn + .45573725hn, yn + .29697761k1 + .15875964k2) 

k4= hnf(xn + hn I yn + .21810040k1 - 3.05096516k2 + 3.83286476k3). 

The coefficients for the classical fourth-order method of Kutta are given by (5.2) 
with w3 = 1. For this case Lotkin [7] found the bound 

(5.13) E I< (-3j)ML4 10.14 X 1W2ML4 

which has a coefficient almost twice as great as that given by (5.7). This classical 
method may be considered a special case of the class of methods in which a3 = 1 - 

a2. The method of this class for a2 5? 2 which has the minimum error bound also 
has reasonably simple coefficients and, therefore, is of some interest since it provides 
an improvement of the classical method even for hand computation. This method 
also has a2 = .4 and the complete set of equations is 

(5.14) yn+ -yn= (-7L2)(Ilk, + 25k2 + 25k3 + ilk4) 

where 
k hnf(x, , y.) 

k2= hnf(xn + (2)hn, yY + (2)k1) 
(5.15) k3 = hnf(xn + (s)hn, yn - (-23o)k1 + (Q)k2) 

k4 hf(x. + hn, I y + (J4)(19k1 - 15k2 + 40k3)). 

The error boiind is given by 

(5.16) E I (I27 Iw)ML4 = 7.70 X 10-2ML4. 
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For completeness we list here the error bounds for two other fourth-order Runge- 
Kutta procedures which have appeared prominently in the literature: 

(1) a2 = , a3 = due to Kutta [6]. 

(5.17) I E I < ( M)L4 = 9.91 X 10-2 ML4 

(2) a2 = ,a3 = 2,W3 = 1 + 1/(2)1/2 due to Gill [4]. 

(5.18) E < [(W5) 5 
- )(")]ML4 8.83 X 10-2ML4. 

6. Numerical Examples and Conclusions. It is standard procedure in papers 
of this kind to finish with some numerical examples that illustrate how favorably 
the methods derived compare with other methods. Milne [8] remarks that especially 
in papers dealing with Runge-Kutta methods examples tend to be chosen which 
favorably illustrate the derived method. In fact, it is difficult to choose meaningful 
examples to illustrate Runge-Kutta methods and the reason for this is clear; the 
complicated nature of the error term makes it difficult to choose functions f(x, y) 

TABLE 1 

Errors in Integration of y' = 1- y2, y(O) = 0 (Solution: y = tanh x) 

Magnitude of Error 
Step Size (h) Number of Steps Method after Number of Steps 

in Column 2 (X 108) 

A 12 
.1 5 B 34 

C 65 

A 75 
.1 10 B 138 

C 152 

A 1190 
.2 5 B 2061 

C 2499 

TABLE 2 
Errors in Integration of y' = [ex(y3 + xy3 + 1)]/[3y2(xex- 6)], 

y(O) = 1 (Solution: y = [(ex + 5)/(6 - xe)]113 

I Magnitude of Error 
Step Size (h) Number of Steps | A'Jethod after Number of Steps 

in Column 2 (X 107) 

A 5 
.1 5 B 10 

C 8 

A 26 
.1 10 B 6 

C 14 
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which really serve as a test and at the same time are such that the differential equa- 
tion (2.1) can be solved analytically. 

Here, for the sake of illustration and to indicate that the derivations in this 
paper were performed correctly, we present in Tables 1 and 2 the results of two 
simple computations comparing three Runge-Kutta methods:* 

Method A-Equations (5.11) and (5.12) 
Method B-Equations (5.14) and (5.15) 
Method C-The classical method with coefficients given by (5.2) with W3 = '3j 

In the example in Table 1 method A compares quite favorably with the other two 
while the comparison in Table 2 is not nearly so favorable. The error bound for 
method A for the example in Table 1 calculated from (5.7) varies from about 10-5 

to 106 as x goes from 0 to .5, which is indicative of the fact that error bounds of the 
type we have derived here are generally quite conservative. We note that it is only 
a matter of a little ingenuity to find other examples to make method A appear more 
or less favorable in comparison with other Runge-Kutta methods. 

In conclusion, we emphasize again the main point of this paper which is likely 
to be obscured by giving examples. This is that, if Runge-Kutta methods are to be 
used to start the solution and to change the interval, one is interested only in being 
able to bound the truncation error as well as possible. Thus, that method which 
allows the smallest bound to be put on the error is in this sense best. Therefore, we 
conclude that on a digital computer equations (5.11) and (5.12) should be used 
when a fourth-order Runge-Kutta method is to be used for starting the solution or 
changing the interval. Similarly, equations (4.10) and (4.11) are recommended as 
a third-order system and equation (3.5) as a second-order system. 
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